41 research outputs found

    PRETZEL: Opening the Black Box of Machine Learning Prediction Serving Systems

    Full text link
    Machine Learning models are often composed of pipelines of transformations. While this design allows to efficiently execute single model components at training time, prediction serving has different requirements such as low latency, high throughput and graceful performance degradation under heavy load. Current prediction serving systems consider models as black boxes, whereby prediction-time-specific optimizations are ignored in favor of ease of deployment. In this paper, we present PRETZEL, a prediction serving system introducing a novel white box architecture enabling both end-to-end and multi-model optimizations. Using production-like model pipelines, our experiments show that PRETZEL is able to introduce performance improvements over different dimensions; compared to state-of-the-art approaches PRETZEL is on average able to reduce 99th percentile latency by 5.5x while reducing memory footprint by 25x, and increasing throughput by 4.7x.Comment: 16 pages, 14 figures, 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI), 201

    Declarative Algorithms in Datalog with Extrema: Their Formal Semantics Simplified

    Get PDF
    Recent advances are making possible the use of aggregates in recursive queries thus enabling the declarative expression classic algorithms and their efficient and scalable implementation. These advances rely the notion of Pre-Mappability (PreM) of constraints that, along with the seminaive-fixpoint operational semantics, guarantees formal non-monotonic semantics for recursive programs with min and max constraints. In this extended abstract, we introduce basic templates to simplify and automate task of proving PreM

    Share the Tensor Tea: How Databases can Leverage the Machine Learning Ecosystem

    Full text link
    We demonstrate Tensor Query Processor (TQP): a query processor that automatically compiles relational operators into tensor programs. By leveraging tensor runtimes such as PyTorch, TQP is able to: (1) integrate with ML tools (e.g., Pandas for data ingestion, Tensorboard for visualization); (2) target different hardware (e.g., CPU, GPU) and software (e.g., browser) backends; and (3) end-to-end accelerate queries containing both relational and ML operators. TQP is generic enough to support the TPC-H benchmark, and it provides performance that is comparable to, and often better than, that of specialized CPU and GPU query processors

    Machine Learning at Microsoft with ML .NET

    Full text link
    Machine Learning is transitioning from an art and science into a technology available to every developer. In the near future, every application on every platform will incorporate trained models to encode data-based decisions that would be impossible for developers to author. This presents a significant engineering challenge, since currently data science and modeling are largely decoupled from standard software development processes. This separation makes incorporating machine learning capabilities inside applications unnecessarily costly and difficult, and furthermore discourage developers from embracing ML in first place. In this paper we present ML .NET, a framework developed at Microsoft over the last decade in response to the challenge of making it easy to ship machine learning models in large software applications. We present its architecture, and illuminate the application demands that shaped it. Specifically, we introduce DataView, the core data abstraction of ML .NET which allows it to capture full predictive pipelines efficiently and consistently across training and inference lifecycles. We close the paper with a surprisingly favorable performance study of ML .NET compared to more recent entrants, and a discussion of some lessons learned
    corecore